An Introduction to the Chern-Simons Theory

Zheng-Wen Liu

Department of Physics, Renmin University of China, Beijing

Institute of High Energy Physics, Chinese Academy of Sciences

10:10 AM, May 14, 2014



Construction of Chern-Simons forms

Constructing a Chern-Simons form needs two ingredients: a symmetry group G in a
certain representation and an odd-dimensional differentiable manifold M. The fundamental
object in a gauge theory is the gauge connection A, a generalization of the vector potential.

The connection A is a Lie algebra valued field that is also a one-form,
A = A,da" (1)
= A\ T"dz" (2)
Here T% a =1,..., N are generators of Lie algebra of the gauge group G and they satisfy
e, 7% = fabepe (3)
In this slide we take the following normalization

1
Tr (T°T°) = =6 4
(107) = | ()
An element of the gauge group G acts on the connection A as

g A— A" = UTAU + U 'dU
Ula(z)) =" e G (5)
A, — A =UTAU+U'9U
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The connection is gauge-dependent and therefore not directly measurable. However, the
curvature ' = dA + A N A (gauge field strength in physics), transforms homogeneously,
F — FY = dAY + AY A AY
= d(UTTAU + U 'dU) + (UTAU + U HdU) A (UTAU + U 1adU)
= U '(dA+ANAU =U'FU (6)

Form the gauge transformation of the curvature, we find a very interesting 2n-form

Tr(F") = Tt (FA---AF) (7)
which is invariant under gauge transformation (5) or (6):
Tv (F") — Tr (F")Y = Tr (FUA--- A FY) (8)
=T (U'FA---AFU) 9)
=Tt (FA---ANF) = Tr(F") (10)

In mathematics, invariants of this kind (or more generally, the trace of any polynomial in F),
like the Euler or the Pontryagin forms, are called characteristic classes. In topology, a geo-
metric or topological being can be easily constructed locally, but when they are generalized
to the global, topological obstructions will be encountered. These topological obstructions

are usually represented as a cohomology class on the manifold — characteristic class.
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Chern form
We denote
Py, (F) = Tr (F") (11)

this is a 2n-form and also called nth Chern form. These Chern forms are invariant under

the gauge transformation and they are all closed [Chern-Weil theorem]:
dPs,(F) = Tr (dpF A+~ ANF+---+FA---ANdpF) =0 (12)
Here we have used (Ezercise 118 in [1])
Tr (dpF) = Tr (dF +[AF)) =dTv (F) + Tr (AANF — (-1)V*FAA) =dTr (F) (13)
and the Bianchi identity

dpF = dF +[A, F] (14)
= d(dA+ANA)+[A dA+ANA]
= dANA—ANdA+ANdA—dANA+AN(ANA) - (ANA)ANA
— 0 (15)
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Chern class

We have proved that Chern forms are all closed. This means that the nth Chern form
defines a cohomology class in H**(M).

Under an infinitesimal variation d A of the connection A,

0Py, (F) = Tt (0FN---ANF+---+FNA---\SF)
= nTr(éF/\---/\F)
= nTr(dD(SA/\--'/\F)
= n Tr(dp(6AAN--- A F))
=nd Tr (0AAN---AF) (16)

the Chern form changes by an exact form. Here we have used the graded cyclic property,
Bianchi identity (14), Eq. (12) and

SF = d(A+6A)+ (A+0A) A (A+5A) — (dA+ A A A)
— dSA+ANGA+SANA
= dSA + [A, 04]
— dpsA (17)
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Chern class
Consider the following variation d A of the connection A,
0A =A —A A = A+tA — Ag=A, A=A (18)
the difference of Chern forms is exact [Chern-Weil theorem]:

Po(F') = Py (F) = Tr (F™) = Tr (F™)
d

1
—/0 T (Bt

1
= n/ dTr (JANF~Y)dt
0

= d (n /0 1 Tr (6A A Fg”)dt) (19)

We thus can define the nth Chern class ¢,(F) of the vector bundle E over M to be the
cohomology class of P, (F), where F' is the curvature of any connection on E. These
invariants are very important tool for classifying vector bundles, and show up throughout

mathematics and physics.
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When take proper normalization, their integral over a 2n-dimensional compact orientable

/pgnw/cnez (20)
M M

and they are all topological invariants. For example, SU(2) gauge theory

1
k=-—— | Tt(FAF) ez 1
572 [ r(FAF) (21)

manifold M are integers

this is called the Pontryagin index (or winding number). More general, if E is a complex

vector bundle,

C, = / o = 27) /M Tr (F") € Z (22)

n!

Is an integer, this also is called nth Chern number of the vector bundle F.
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Chern-Simons forms

We have proved that Chern forms P,,(F) are all closed. By Poincare lemma, the nth

Chern form P,,(F') can be locally expressed as the derivative of a (2n — 1)-form,
Py, (F) =dQa—1(A, F) (23)

It's important to note that this cannot be true globally. If P, = d@Q, 1 globally on a

manifold M without boundary, we would have
/ Poy, = / dQopm—1 = Q2m-1 = 0 (24)
M M oM
where dim M = 2m.

The (2n — 1)-form @Qs,_1(A, F) is called the Chern-Simons form of P, (F). We can

explicitly work out the Chern-Simons form. For example,
Py(F) =Tr(F) = Tr (dA+ AANA) = dTr (A) (25)

thus we get Q1(A, F') = Tr(A).
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Chern-Simons forms
Let A, =t A and let

Fy = dtNA+tdA+1ANA (26)

be the curvature of connection A;. Then we have

1
Tr (FAF) :/ %Tr(Ft/\Ft)dt
0

1
= / %Tr((dt/\A+tdA+t2AAA)/\(dt/\A+tdA+t2A/\A)>dt
0

1
= Qd/ Tr (AN (EdA+ AN A) )t
0
:dTr<A/\dA+§A/\A/\A) (27)
Here the 3-form
2
Tr(A/\dA+§AAA/\A> (28)

is famous Chern-Simons 3-form which is our concern.
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It is nice that check directly that its exterior derivative is the second Chern form:

dTr (AAdA+§AAAAA) _ (dA/\dAJerA/\A/\A)
= Tr (dA+ AN A) A (dA+ AN A))
— Tt (FAF) (29)
In five dimensions, the Chern-Simons 5-form is given by

QJAF%:%(AAmMMM+gAAAAAAWHEAAAAAAAAA> (30)

-—ﬂ(FAFAA—%FAAAAAA+%AAAAAAAAA) (31)

Generally, in (2n — 1) dimensions the Chern-Simons form is given by
Qon_1(A, F) = /O 1 dt Tr (AN F'), (32)
F, = tdA+t*AN A, (33)
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Non-Abelian Chern-Simons theories

The action of Chern-Simons theory is proportional to the integral of the Chern-Simons

3-form
2
SCS:/-{/TT(A/\dA—i—gA/\AAA) (34)

in D = 3 dimensions. Here we take the gauge group G = U(N).

In components form, the above Non-Abelian Chern-Simons Lagrangian is
Lcs = ketPTr (AM(?VA,) + ;AMAVA/)) (35)
Under infinitesimal variations § A, of the gauge field, the change of the action is
6Scs = k | &z Ty <5AM6’VAP + A,0,(04,) + §5AMAVA,0 + %AM(SAVAP + %AMAV(SAp)
— ki [ e T (5A4,0,4,+ A,0,(04,) + 204,4,4, )

P e Tx (54,(0,4, — 0,A,) + A, Ay, A +0,(A,64,))

d*x " Tr (A, F,,). (36)

f e
— K / Pz e T (84,0,A, — SAD,A, +25A,4,4, )
f e
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where the gauge field strength is defined by

1
F=dA+ANA = 5E“,dgg” A dx”, F. = 0,A, —0,A,+ A, A (37)

Alternative derivation
0S5 = S[A+0A] — S[A] (38)
— /{/Tr (A/\d(cSA) +dANGA +2ANANIA + O((dA)2)>
— m/Tr(—d(A/\éA) +2dANOA +2ANANIA + O(((SA)2))
= 2K;/Tr((dA+AAA) AGA)
= 2% / Tr (F A 6A) (39)
This gives the equation of motion
F=dA+ANA =0 (40)

The classical equations of motion are therefore satisfied if and only if the curvature F
vanishes everywhere, in which case the connection A is flat. However, the quantum

version of Chern-Simons theory is very interesting as we will see later.
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Gauge transformation

The nonabelian gauge transformation U (which is an element of the gauge group) tarns-

forms the gauge field as
Ay — Al = U (A, +0,)U (41)
First we consider an infinitesimal transformation, i.e.

ata

Ula(z)) =" = @ = 1 4 ia + O(a?) (42)

Thus the gauge transformation of the gauge field reduce to
A, — Ag = A, —i[a, A] +i0,a + O(a?) (43)
Under this infinitesimal transformation,
L[A,] — E[Ag] = ke Tr (Ag@VApU + %AgAgAg)
= ke’ Tr ((Au —ilo, A) +i0,2) 0, (A, — o, 4] + i0,a)

+ = (A, —i[a, A +i0,0) (A, — i, A)] +i0,0) (4, — ila, Ay +i0,a) + 0(042))

Wl Do

(44)
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We calculate
0L = L[A)] — L[A,]
— ke T (= id,0, [0, Ay = i(lo, Ay - 0,0)8,4, - 24,4, (0, A, - d,0) + O(a?))
ey ( Ao, A + ([, A — 8,0)8,4, — 24, A, 0,0+ O(a2)>
— —in e Tr (9,00,4,) + O(a?)
— iRk, Tr (aV@Ap) + O(a?) (45)
In fact, we will see
SL = —ik 9, Tr (ayaAﬁ O<a2))
= K", Tr (a,,(1 +ia+ 0(a?)) (1 — o+ 0(042>)Ap)
= —k 9, Tr (O,UU 1A, ) (46)

Therefore, if we can neglect boundary terms then the corresponding Chern-Simons action

is invariant under the infinitesimal gauge transformation.
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Alternative derivation

Consider a smooth 1-parameter family of gauge transformations U,

tel0,1] st U_y=1, U_=U (47)
Under such a gauge transformations U,
A — A = UTTAU 4 U7 U, (48)
Then we claim
d
—S(A;) = 0. 49
5(4) (49)
With no loss of generality, it suffices to show this for t = 0:
dSCs(At) d/ 2
— =r— [ Tr A ANdA +=-A, NA N A
it o Tar ), A\ eamgA AN A
dA, d dA,
= Tr | — AdA; + A, N —(dA 2— NA N A
/@'/M r(dt N dA; + t/\dt( ¢) + 7 A Ay A t) . (50)
Notice that
d dU; ! dU, du; "t du,
0= —(U7'Y), , = LU, + U L - L ' 51
20 U (dt AT adt ), (51)
So we can write
1
- — Uy = T (52)
dt |,_, dt |,_,
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Then we obtain

A, d .
o T @ (v v+ 0 tav) |
= (= TAU, + U/ 'AT — TdU, + U; dT)|,_,
= (—TA+ AT +dT) (53)
The first two terms of Eq. (50):
d Ay d
Tr <E N dAt + At N £<dAt)> .
= Tr((—TA+AT+dT) /\dA+A/\d(—TA+AT))
—2Tr (2(~ TA+AT) AdA) + d'Te (TdA + (= TA+ AT) A A)) (54)
Using above equations (53) and (54), then we have
dScs(A)) - _ 2/@/ Tr((—TA+AT) ANdA+ (—TA+ AT +dT) /\A/\A)
dt t=0 M

_ 2/4;/ Tr(—TA/\dA+AT/\dA+dT/\A/\A)
M

_ zﬁ/ ATr (TA A A)
M

=0 (55)
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e Large Gauge Transformation:
2
LIA,)] = LIA]] = ke’ Tr (Aj{ayApU -+ 5A§{A5A5> (56)

Firstly we calculate the second term
L, = %e’“”’p Tr (A7 AU AY)
%6“”’ T (U7 AU + U 9,0) (U7 AU + U 9,0) (U AU + U79,U))

)
STy (U7 4,007 AU A + 30U AUUT O, U 0,U

+3UTQUUTAUUTIAU + U UUT,UU 9,0

2
= S (AMA,,A[) + U 9,UU 9, UU0,U

+3U'A0,UUO,U +3 8MUU_1AVA[,)
2
= STy (4,4,4,+ U 9UU 0,0 0,0)

+ 207 T (UM A, QU0 9,0 + ,UU A, A, ) (57)
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The first term:

£ = e (409,47
= T (U AU+ UT9,0)0,(U AU + UT0,U))

= Ty

(U AU + U7 9,0) (U AU + U™ 9,A,U + U A,0,U + 8,U7'9,U))

= Py

N7 N7 N

(UT'A,UU9,A,U0) +U'0,U0,U'0,U
FUTAU (DU AU + U ADU +0,U70,U))
FUTUOUT A + UT,AU + U A,0,U))
— Ty <AM8VAp — U9, UU 9, UU 9, U
FUTAUUT AU + U AUUT AU + U AUSUTO,U)
FUTQUAUT AU + UTUUT,AU + U UUT A,0,0)
— Ty <AM8VAp — U9, UU B, UU 9, U
+AAQUU + AADUUT —A0,UUO,UU!
~ A,QUUT UV +0,UU0, A4, + AD,UU,UU )
— Ty (AME)VA[,—U‘l(?,,,UU_lc?VUU_lc‘?pU
24, A,0,UU" = 34,0,UU9,UU" + 8,UU9,4, ) (58)
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Thus we have
AL = LIAY] - L[A,]

= ke’ Tr (—%Ul(?uUUld,UUlapU
—24,A,0,UU" —3A,0,UU '0,UU " +0,UU'9,A,
+2(U'A4,0,UU0,U + 6’MUU1AVAP)>

= k™" Tr ( - %U‘lauUU_layUU_lapU
— A, 0,UU0,UU " + 8MUU18VAP)

— kT ( - %U‘l(?MUU_lﬁyUU_lﬁpU 9, (GVUUlAp>> (59)

The winding number of the group element U € G is

1
2472

Final we obtain the change of the action under the large gauge transformation

&3 e Ty <U‘18MUU‘18VUU‘18,)U) cZ,  mUN)=Z  (60)

w

S[A] — S[AY] = S[A] — k872w (61)

Zheng-Wen Liu An Introduction to the Chern-Simons Theory 18/22



In path integral quantization formalism, one needs the measure
[DA] A (62)

invariant under the gauge transformation. Firstly notice that the Lebesgue measure DA is

gauge invariant:

DA = ] dAs() — [DAY] = [DA] (63)
a, T
So we must require
S[A] — S[AY] = S[A] — k81*w = S[A] + 27N, N €N (64)
This gives
_r g [A]—E/T ANdA+2ANANA), keN (65)
T SEI= 3 |

Here the positive integer k is called the Chern-Simons level.
As pointed out by Witten, consistency of quantum field theory does not quite require the

single-valuedness of S, but only of exp(iS) [10].
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Topological invariants

Since the action of Chern-Simons theory
2
Scs—ffTr(A/\quLgA/\A/\A) (66)
T

does not involve the metric, the resulting quantum theory is topological, at least formally.
That is, the theory contains topological invariants. In particular, the partition function

Z(M) = / [DA] S (67)
should define a topological invariant of the manifold M without boundary. A detailed
analysis shows that this is in fact the case, with an extra subtlety: the invariant depends
not only on the three-manifold but also on a choice of framing [10, 11].

The observables of Chern-Simons theory are the n-point correlation functions of gauge-
invariant operators. The most often studied class of gauge invariant operators are Wilson
loops. A Wilson loop is the holonomy around a loop in M, traced in a given representation
R of GG. More concretely, given an irreducible representation R and a loop v in M, one may

define the Wilson loop Wxk(7) by
Wr(v) = Trg P exp (Z%A) (68)
2l

where P is the path-ordered.
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Summary
The action of Chern-Simons theory in D = 3 dimensions is given by
k 2
SCS=4—/Tr(A/\dA+§A/\A/\A) (69)
v

e Topological origin The Chern-Simons form is related to a topological density in 2n

dimensions known as a characteristic class ()o,_1, through

Py (F) = dQan-1(A, F) (70)
2
T (FAF) = dTe (ANdA+ZANANA) (71)
e No metric required As noticed by Witten [10], since this action does not involve the
metric, the resulting quantum theory is topological, at least formally.
e Orientation-preserving diffeomorphisms

e Gauge invariance The Chern-Simons action is invariant under the infinitesimal gauge

transformation. Under the large gauge transformation, the change of the action
S[A] — S[AY] = S[A] — 27k N, ke Nt (72)

The positive integer k is called the level of the quantum Chern-Simons theory.
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